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In this paper we give a sufficient condition for the pointwise Korovkin property
on B(X). the space of bounded real valued functions on an arbitrary countable set
X = {X|s ¥, ], Our theorem follows from its L, (X, i) analogue (and conversely);
here 1 < p<oc and p is a positive finite measure on X such that p({x,}}>0 for
all J. 11985 Academic Press, Inc.

P. P. Korovkin [5, pp.39, 49] proved the following fundamental
theorem, concerning the convergence of a sequence of positive linear
operators to the identity operator.

THEOREM 1. Let f\, f>, f;eC(la, b]), where —x<a<b<x. A
necessary and sufficient condition that for every sequence L, of positive
linear operators on C{[a, b]) the relations

L.(f)— 1., i=1,2,3, uniformly in [a, b]
imply

L(f)— /. uniformly in [a, b1,

for every feCla, b], is that [\, f~, f~ is @ Chebyshev system on [a, b].

The next theorem gives a sufficient condition for the above Korovkin
characterization in a much more general setting and also motivates
Theorem 3, the main result of this paper.

THEOREM 2 (V. Volkov; sce [8, Theorem 1]). Let Q be a compact
metric space. Let a sequence of positive linear operators L,: C(Q)— C(Q) be
such that

L.(f)— 1. i= 1.k, uniformly in Q.
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In order thar L,(f)— [. uniformly in Q, for all { e C(Q)., it is enough to
assume that for each x,e Q there are real constants f8,..... B, such that

K
S RS =0 forallxeQ
{

i

and (2.1)

A
Y PS>0 forallxeQ— [x,).
]

Saskin (see [7]) has shown that the sufficient condition of Volkov is not
necessary.

THEOREM 3. Let X' = [ X|.,... X,....| be a countable set. Consider B(X), the
space of real valued bounded functions on X with the supremum norm ||| ,
and a sequence of positive linear operators L, B(X)— B(X) such that
L1 x)=1 for all j. Suppose that. for some | f}..... ;| © B(X),

lim L.(f.x)=f{x;)  foralliandj. (3.1)

no

In order that L[ x,)— f(x;} for all {'€ B(X) and all x,. it is enough to
assume for each j there are real constants f3,...., f, such that
K

SRS =[x =20 forallxe X

i= 1

and (3.2)

A
S B~ x>0 forallxe X — |x,).

f=1

We shall use the following

LEMMA 4. Let X={x,.. x,..| be a countable measurable space,
| < p <, and p a finite positive measure on X such that p({x,})>0 for all
J. Ler B(X) be as above and f, [, f+,..€ B(X), where all || f,I|, <c, ¢>0.
Then [, — [ pointwise on X iff f,,— fin L, (X, u).

Proof. (=) By the uniform boundedness of f, and by u(X) < o, we
obtain | f,|” <¢”€e L,(X, u). Since f, — [ pointwise, by a variation of the
dominated convergence theorem (see [4], p. 180) we get /, — f in the pth
mean. Note B(X)< L (X, u).



A DISCRETE KOROVKIN THEOREM 385

(«<=) The L, convergence implies weak convergence, the indicator
function 7, e L (X, u) where 1/p+1/g=1 and pu({x,})>0. Hence the
pointwise convergence. ||

Next is an independent L, result which will be used in the proof of
Theorem 3.

PROPOSITION 5. Let X = {x,,., ,\',,...} be a countable set. Let w(x;)>0
Jorall jand 3.7 w(x;) <. Let B(X) be as above and L, he a sequence of
positive linear operators B(X) — B(X) such that L,(1,x,)=1 for all j. Sup-

pose that, for some |, f+,.... [, € B(X) and some p, 1 < p< o,

lim (i LS x) = )1 u-(x,-)):OJ:l.,z,.... ko (5.1)
j=1

n—s L

In order that 3_7_ | |L,( [, x,) = f(x))|” w(x;) =0 for all f € B(X) it is enough
to assume: for each j there are real constants ..., B, such that

S BAfx)=fAx =0 forallxeX
and (5.2)

.
Y BAfAx) = fAx ) >0 forall xe X — {x,].

Je= 1

Proojl The weight w gives rise to a positive finite measure g on X with

{x) )>0 for all xeX. Since B(X)cL,(X,pu), (51) implies

UL,, ~fl,—0 for all i 1f there exists feB(X) such that
IIL,( / — f1I, # 0, then there are x,€ X and an ¢>0 so that

Lfox)—fx)l>¢  foralln=some n.

Because each positive linear functional L,(-. x;) on B(X} is bounded, by a
basic representation theorem, for each specific j = j, as above, there exists
g nEL(X, u) where l/p+1/g=1 such that

L,(fix,)= .\ S(xX) - gy alx) - pldx) for all /'€ B(X).

By L,(1,x,)=1 and the positivity of L,(-, x;) one obtains |, g nlx)
uldx)=1 and g, S(x)=0 for all xe X. Thus
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e<|L,(fox,) = fx,)l

O S g0 )]

<l ([ gt )

AT

SO

1> ¢ ) pld) > ——— =550, foralln>n,

AN L= fx)0,
There cannot be constants 0 < %, <9 and x,,.... 2, with
%o+ Z —fix;,))=0,  forall xeX,
and

A
a()+ Z 11(/:(\/)7/1(\’/(.))2 15 fOr dli .\'GX'* I('V !
=1

jo s

since, otherwise, we would have

%7 8 vyl Z S = L)) g (X)) = gy, ),

fe= ]

for all xe X — {x, | and therefore

%o ’P g\ﬁ,.n(’-“) ' ,U-((l’.‘()
YN L\/”’
k .
+ Z y,'J\, L (/1(\)*/( /l,)) g\,”,,( X} ,Ll(d,\')
i 1 N
2 | g\/“‘lz('\’) : ;u(alx- )

vy oy
X HRVAH

(Note that L,(f;. x, j Jilx g\/ Ax)uldy), i=1,.., k) Consequently,
since L,(f,, . ,”) /( ), i=1,..k, we would get

k
0= lim <Z o, (L, (f.x,) ’A/‘;(-"/\)))>?5'(] — %y)
n - v ; 1
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and hence a,> 1, contradicting the above relations o, < d < 1. Therefore
there cannot be constants f§,,..., f, such that

Y BAfilx) = filx,))=0 forall xeX

and
Y BAfdx) = flx;,)>0 forallxeX—{x,}. 1
i=1

Proof of Theorem 3. Note B(X)c L, (X, u) for any p, 1 <p<oc, and
any positive finite measure p on X with each u({x,})>0. By Lemma 4, the
pointwise convergence L,(f;, x;)— fx,), i=1,., k, for all j, is equivalent
for such p and p, to the convergence in the pth mean of L,(f;) to f.
i=1,.., k. Furthermore, this measure u can serve as a weight function on X.
Thus Proposition 5 implies our theorem. |

To display the power of conditions (3.2), we show that they are satisfied
by basic Chebyshev systems such as {1, x, x*} and {1, x, ¢"}.
ExampLEs. Let X' = {x,,.., x;,...} be a real countable set with all x;<t.

(i) The set {1, x, x*} satisfies (3.2), namely: for arbitrary ;>0 and
B.= —2-f5-x; we have
B (x—x)+f5 (X*—x7)>0 for all x # x,
=0 for x=x,.

(i) Similarly, the {1, x,e"} fulfills (3.2): for arbitrary f,>0 and
f.= —p;- e we have

Brlx—x)+ By (e"—e")>0 for all x # x,

=0 for x=x,.
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