JOURNAL OF APPROXIMATION THEORY 45, 383-388 (1985)

A Discrete Korovkin Theorem

GEORGE A. ANASTASSIOU

Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881-0816, U.S.A.

Communicated by Oved Shisha

Received November 22, 1984

In this paper we give a sufficient condition for the pointwise Korovkin property on B(X), the space of bounded real valued functions on an arbitrary countable set $X = \{x_1, ..., x_j, ...\}$. Our theorem follows from its $L_p(X, \mu)$ analogue (and conversely); here $1 \le p < \infty$ and μ is a positive finite measure on X such that $\mu(\{x_j\}) > 0$ for all j. $-\infty$ 1985 Academic Press, Inc.

P. P. Korovkin [5, pp. 39, 49] proved the following fundamental theorem, concerning the convergence of a sequence of positive linear operators to the identity operator.

THEOREM 1. Let $f_1, f_2, f_3 \in C([a, b])$, where $-\infty < a < b < \infty$. A necessary and sufficient condition that for every sequence L_n of positive linear operators on C([a, b]) the relations

$$L_n(f_i) \rightarrow f_i, \quad i = 1, 2, 3, \text{ uniformly in } [a, b]$$

imply

 $L_n(f) \rightarrow f$, uniformly in [a, b],

for every $f \in C[a, b]$, is that f_1, f_2, f_3 is a Chebyshev system on [a, b].

The next theorem gives a sufficient condition for the above Korovkin characterization in a much more general setting and also motivates Theorem 3, the main result of this paper.

THEOREM 2 (V. Volkov; see [8, Theorem 1]). Let Q be a compact metric space. Let a sequence of positive linear operators $L_n: C(Q) \to C(Q)$ be such that

$$L_n(f_i) \to f_i, \qquad i = 1, ..., k, uniformly in Q.$$

In order that $L_n(f) \to f$, uniformly in Q, for all $f \in C(Q)$, it is enough to assume that for each $x_0 \in Q$ there are real constants $\beta_1, ..., \beta_k$ such that

$$\sum_{i=1}^{\kappa} \beta_i f_i(x) \ge 0 \qquad \text{for all } x \in Q$$
(2.1)

and

$$\sum_{i=1}^{k} \beta_{i} f_{i}(x) > 0 \quad \text{for all } x \in Q - \{x_{0}\}.$$

Saškin (see [7]) has shown that the sufficient condition of Volkov is not necessary.

THEOREM 3. Let $X = \{x_1, ..., x_j, ...\}$ be a countable set. Consider B(X), the space of real valued bounded functions on X with the supremum norm $\|\cdot\|_{x}$ and a sequence of positive linear operators $L_n: B(X) \to B(X)$ such that $L_n(1, x_j) = 1$ for all j. Suppose that, for some $\{f_1, ..., f_k\} \subset B(X)$,

$$\lim_{n \to \infty} L_n(f_i, x_j) = f_i(x_j) \quad \text{for all } i \text{ and } j.$$
(3.1)

In order that $L_n(f, x_j) \rightarrow f(x_i)$ for all $f \in B(X)$ and all x_j , it is enough to assume for each j there are real constants $\beta_1, ..., \beta_k$ such that

$$\sum_{i=1}^{k} \beta_i (f_i(x) - f_i(x_i)) \ge 0 \qquad \text{for all } x \in X$$

(3.2)

and

$$\sum_{i=1}^{\kappa} \beta_i (f_i(x) - f_i(x_i)) > 0 \quad \text{for all } x \in X - \{x_i\}.$$

We shall use the following

LEMMA 4. Let $X = \{x_1, ..., x_j, ...\}$ be a countable measurable space, $1 \le p < \infty$, and μ a finite positive measure on X such that $\mu(\{x_j\}) > 0$ for all j. Let B(X) be as above and f, $f_1, f_2, ... \in B(X)$, where all $||f_n||_{\infty} < c$, c > 0. Then $f_n \to f$ pointwise on X iff $f_n \to f$ in $L_p(X, \mu)$.

Proof. (\Rightarrow) By the uniform boundedness of f_n and by $\mu(X) < \infty$, we obtain $|f_n|^p \leq c^p \in L_1(X, \mu)$. Since $f_n \to f$ pointwise, by a variation of the dominated convergence theorem (see [4], p. 180) we get $f_n \to f$ in the *p*th mean. Note $B(X) \subset L_p(X, \mu)$.

(⇐) The L_p convergence implies weak convergence, the indicator function $I_{\{x_j\}} \in L_q(X, \mu)$ where 1/p + 1/q = 1 and $\mu(\{x_j\}) > 0$. Hence the pointwise convergence.

Next is an independent L_{ρ} result which will be used in the proof of Theorem 3.

PROPOSITION 5. Let $X = \{x_1, ..., x_j, ...\}$ be a countable set. Let $w(x_i) > 0$ for all j and $\sum_{j=1}^{\infty} w(x_j) < \infty$. Let B(X) be as above and L_n be a sequence of positive linear operators: $B(X) \to B(X)$ such that $L_n(1, x_j) = 1$ for all j. Suppose that, for some $f_1, f_2, ..., f_k \in B(X)$ and some $p, 1 \le p < \infty$,

$$\lim_{n \to \infty} \left(\sum_{j=1}^{\infty} |L_n(f_i, x_j) - f_i(x_j)|^p w(x_j) \right) = 0, i = 1, 2, ..., k.$$
 (5.1)

In order that $\sum_{j=1}^{\infty} |L_n(f, x_j) - f(x_j)|^p w(x_j) \to 0$ for all $f \in B(X)$ it is enough to assume: for each j there are real constants $\beta_1, ..., \beta_k$ such that

$$\sum_{i=1}^{k} \beta_i (f_i(x) - f_i(x_j)) \ge 0 \quad \text{for all } x \in X$$

and

$$\sum_{i=1}^{\kappa} \beta_i (f_i(x) - f_i(x_i)) > 0 \quad \text{for all } x \in X - \{x_i\}.$$

Proof. The weight w gives rise to a positive finite measure μ on X with $\mu(\{x\}) > 0$ for all $x \in X$. Since $B(X) \subset L_{\rho}(X, \mu)$, (5.1) implies $\|L_n(f_i) - f_i\|_{\rho} \to 0$ for all *i*. If there exists $f \in B(X)$ such that $\|L_n(f) - f\|_{\rho} \neq 0$, then there are $x_i \in X$ and an $\varepsilon > 0$ so that

$$|L_n(f, x_i) - f(x_i)| > \varepsilon$$
 for all $n \ge \text{some } n_0$.

Because each positive linear functional $L_n(\cdot, x_j)$ on B(X) is bounded, by a basic representation theorem, for each specific $j = j_0$ as above, there exists $g_{x_{nv},n} \in L_q(X, \mu)$ where 1/p + 1/q = 1 such that

$$L_n(f, x_{j_0}) = \int_X f(x) \cdot g_{x_{j_0}, n}(x) \cdot \mu(dx) \quad \text{for all } f \in B(X).$$

By $L_n(1, x_{i_0}) = 1$ and the positivity of $L_n(\cdot, x_{i_0})$ one obtains $\int_X g_{x_{i_0},n}(x) \cdot \mu(dx) = 1$ and $g_{x_{i_0},n}(x) \ge 0$ for all $x \in X$. Thus

(5.2)

$$\begin{aligned} \varepsilon &< |L_n(f, x_{j_0}) - f(x_{j_0})| \\ &= \left| \int_{X^{-} \{x_{j_0}\}} (f(x) - f(x_{j_0})) \cdot g_{x_{j_0}, n}(x) \cdot \mu(dx) \right| \\ &\leq ||f - f(x_{j_0})||_{\mathcal{L}} \cdot \left(\int_{X^{-} \{x_{j_0}\}} g_{x_{j_0}, n}(x) \cdot \mu(dx) \right), \end{aligned}$$

so

$$1 \ge \int_{x_{-}+x_{j_0}^+} g_{x_{j_0},n}(x) \cdot \mu(dx) > \frac{\varepsilon}{\|f - f(x_{j_0})\|_{\infty}} =: \delta > 0, \quad \text{for all } n \ge n_0$$

There cannot be constants $0 < \alpha_0 < \delta$ and $\alpha_1, ..., \alpha_k$ with

$$\alpha_0 + \sum_{i=1}^k \alpha_i \cdot (f_i(x) - f_i(x_{i_0})) \ge 0, \quad \text{for all } x \in X,$$

and

$$\alpha_0 + \sum_{i=1}^k \alpha_i \cdot (f_i(x) - f_i(x_{j_0})) \ge 1, \quad \text{for all } x \in X - \{x_{j_0}\},$$

since, otherwise, we would have

$$\alpha_0 \cdot g_{x_{i_0},n}(x) + \sum_{i=1}^k \alpha_i \cdot (f_i(x) - f_i(x_{i_0})) \cdot g_{x_{i_0},n}(x) \ge g_{x_{i_0},n}(x),$$

for all $x \in X - \{x_{j_0}\}$ and therefore

$$\begin{aligned} \alpha_0 \cdot \int_{X = \{x_{i_0}\}} g_{x_{i_0},n}(x) \cdot \mu(dx) \\ &+ \sum_{i=1}^k \alpha_i \cdot \int_{X = \{x_{i_0}\}} (f_i(x) - f_i(x_{i_0})) \cdot g_{x_{i_0},n}(x) \cdot \mu(dx) \\ &\geq \int_{X = \{x_{i_0}\}} g_{x_{i_0},n}(x) \cdot \mu(dx). \end{aligned}$$

(Note that $L_n(f_i, x_{j_0}) = \int_X f_i(x) \cdot g_{x_{j_0},n}(x) \cdot \mu(dx)$, i = 1, ..., k.) Consequently, since $L_n(f_i, x_{j_0}) \rightarrow f_i(x_{j_0})$, i = 1, ..., k, we would get

$$0 = \lim_{n \to \infty} \left(\sum_{i=1}^{k} \alpha_i \cdot (L_n(f_i, x_{i_0}) - f_i(x_{i_0})) \right) \ge \delta \cdot (1 - \alpha_0)$$

and hence $\alpha_0 \ge 1$, contradicting the above relations $\alpha_0 < \delta < 1$. Therefore there cannot be constants $\beta_1, ..., \beta_k$ such that

$$\sum_{i=1}^{k} \beta_i (f_i(x) - f_i(x_{j_0})) \ge 0 \quad \text{for all } x \in X$$

and

$$\sum_{i=1}^{k} \beta_i (f_i(x) - f_i(x_{j_0})) > 0 \quad \text{for all } x \in X - \{x_{j_0}\}.$$

Proof of Theorem 3. Note $B(X) \subset L_p(X, \mu)$ for any $p, 1 \le p < \infty$, and any positive finite measure μ on X with each $\mu(\{x_j\}) > 0$. By Lemma 4, the pointwise convergence $L_n(f_i, x_j) \to f_i(x_j), i = 1,...,k$, for all j, is equivalent for such p and μ , to the convergence in the pth mean of $L_n(f_i)$ to f_i , i = 1,...,k. Furthermore, this measure μ can serve as a weight function on X. Thus Proposition 5 implies our theorem.

To display the power of conditions (3.2), we show that they are satisfied by basic Chebyshev systems such as $\{1, x, x^2\}$ and $\{1, x, e^x\}$.

EXAMPLES. Let $X = \{x_1, ..., x_j, ...\}$ be a real countable set with all $x_j \le \tau$. (i) The set $\{1, x, x^2\}$ satisfies (3.2), namely: for arbitrary $\beta_3 > 0$ and $\beta_2 = -2 \cdot \beta_3 \cdot x_j$ we have

$$\beta_2 \cdot (x - x_j) + \beta_3 \cdot (x^2 - x_j^2) > 0 \quad \text{for all } x \neq x_j$$
$$= 0 \quad \text{for } x = x_j.$$

(ii) Similarly, the $\{1, x, e^x\}$ fulfills (3.2): for arbitrary $\beta_3 > 0$ and $\beta_2 = -\beta_3 \cdot e^{x_j}$ we have

$$\beta_2 \cdot (x - x_j) + \beta_3 \cdot (e^x - e^{x_j}) > 0 \qquad \text{for all } x \neq x_j$$
$$= 0 \qquad \text{for } x = x_j.$$

ACKNOWLEDGMENT

The author wishes to thank Professor J. H. B. Kemperman of the University of Rochester, New York, for interesting discussions during the course of this work.

References

1. H. BAUER, Approximation and abstract boundaries, Amer. Math. Monthly 85 (1978), 632-647.

- 2. E. HEWITT AND K. STROMBERG. "Real and Abstract Analysis." Springer-Verlag, New York. Berlin, 1965.
- 3. S. KARLIN AND W. J. STUDDEN, "Tchebycheff Systems: With Applications in Analysis and Statistics," Interscience, New York, 1966.
- 4. J. F. C. KINGMAN AND S. J. TAYLOR, "Introduction to Measure and Probability," Cambridge Univ. Press, London, 1966.
- 5. P. P. KOROVKIN. "Linear Operators and Approximation Theory," Hindustan Publ. Corp., Delhi, 1960.
- 6. G. G. LORENTZ, "Korovkin Sets," Lecture Notes, Center for Numerical Analysis, The University of Texas at Austin, 1972.
- J. A. ŠAŠKIN, Korovkin systems in spaces of continuous functions, Amer. Math. Soc. Transl. Ser. 2 54 (1966), 125–144.
- V. I. VOLKOV, Conditions for convergence of a sequence of positive linear operators in the space of continuous functions of two variables, *Kaliningrad Gos. Ped. Inst. Učen. Zap.* 26 (1958), 27–40. [Russian]