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In this paper we give a suflicient condition for the pointwise Korovkin property
on B(X). the space of bounded real valued functions on an arbitrary countable set
X = {x\ ..... x, .... }. Our theorem follows from its LAX. III analogue (and conversely);
here 1 'S P<x and Il is a positive finite measure on X such that III {x,:) > 0 for
all i ('I 1985 Academic Press, Inc

P. P. Korovkin [5, pp.39, 49J proved the following fundamental
theorem, concerning the convergence of a sequence of positive linear
operators to the identity operator.

THEOREM 1. Let fl' f~, /1 EC( [a, h J),
necessary and sufficient condition that f(Jr
linear operators on C( [a, h J) the relations

where -XJ < a < h < x. A
every sequence L I1 or positive

imply

L I1 UJ --+ I, i = I, 2, 3, unif()rmly in [a, hJ

unif()rmly in [a, hJ,

f(Jr everyfEC[a,hJ, is thatrl,f~,f1 is a Chehyshev system on [a,h].

The next theorem gives a sufficient condition for the above Korovkin
characterization in a much more general setting and also motivates
Theorem 3, the main result of this paper.

THEOREM 2 (V. Volkov; see [8, Theorem 1J). Let Q he a compact
metric space. Let a sequence or positive linear operators L I1 : C(Q) --+ C(Q) he
such that

i = I ...., k, unif{Jrmly in Q.
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In order that L,,(f) ---+ I unijimnlr in Q. I ill' al! f r= C( Q). it is enough to
assume that lilr each X o r= Q there are real ('(Instants I> I.···. /> k such that

and

k

I /));lx) '? 0
I I

k

I /));(.\) >0
I I

lilr al/ x r= Q

/ill' all x r= Q - :xo].

(2.1 )

Saskin (see [7 J) has shown that the sufficient condition of Volkov is not
necessary.

THEOREM 3. Let X = : x I' ...• x/ .... } he a countahle set. Consider B( X), the
space oj real valued hounded functions on X with the supremum norm 11'11 /
and a sequence oj positive linear operators L,,: B(X) ---+ B(X) such that
L II ( 1•.\) = 1 for al/ j. Suppose that. !ilr some :fl ..... /~ : c B(X),

jill' al/ i and j. (3.1 )

In order that LillI XI) ---+f(x/) IiiI' al! fr= B(X) and al! XI' it is enough to
assume /i)r each j there are real constants /i I.··.' Ii k such that

k

I/>ll;(x)-Oxl)),?O
, I

and

k

I fJ,U;(,\) -Ox/)) > 0
1= J

We shall use the following

IiiI' al/ X r= X

lilrallxr=X- {XI:'

(3.2)

LEMMA 4. Let X = {x I •... , Xl .... : he a countahle measurahle space,
1::; p < x, and 11 a finite positive measure on X such that Il( {xJ } ) > 0 jar al!
j. Let B(X) he as ahove and I fl' /~, ... E B(X). where al! 11/;,11/ < c, C > O.
Then /;, ---+ f poinMise on X iffI, ---+ f in L ,,( X, {i).

Proof (=> ) By the uniform boundedness of j;, and by Il( X) < x, we
obtain IIY ::; cf' r= L I (X, 11). Since I, ---+ f pointwise, by a variation of the
dominated convergence theorem (see [4J. p. 180) we getI,---+fin the pth
mean. Note B(X) c LI'(X, 11).
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(<=) The L p convergence implies weak convergence, the indicator
function I: x, : EL'I(X, p) where l/p+l/q=1 and p((x;]»O. Hence the
pointwise convergence. I

Next is an independent L
I

> result which will be used in the proof of
Theorem 3.

PROPOSITION 5. Let X = [x I , ... , x" ... : he a countah!e set. Let w(xi)> 0
f{lr alli and L:~ I w(xi )<x. Let B(X) he as ahove and LI/ he a sequence oj
positive linear operators: B(X) --> B(X) such that LI/(I, .\) = 1 fill' allj. Sup­
pose that, f{lr some II ,f~ ,... , f~ E B( X) and some p, I ~ P < x,

In order that L:~ 1 IL,JJ: x;l- I(·\) I I' n(x,) --> Ojilr allf E B(X) it is enough
to assume: f{H each j there are rea! constants Ii I , ... , f~ k such that

and

k

L f3 Jj;( x) - fJx i)) ~ 0
i= I

k

L Ii,(.f~(x) - fJx,)) > 0
i= 1

f{H all x E X

f{lr all x EX - [x;).

(5.2)

Proof: The weight II' gives rise to a positive finite measure p on X with
p([x}»O for all XEX Since B(X)cLp(X,p), (5.1) implies
II LI/(f) - Iii p --> 0 for all i. If there exists IE B( X) such that
II LI/(/) - III p f+ 0, then there are x, E X and an I: > 0 so that

for all n ~ some no.

Because each positive linear functional LI/(', Xi) on B(X) is bounded, by a
basic representation theorem, for each specific j = jo as above, there exists
g "(i"I/ E L'I(X, p) where I/p + I/q = I such that

L,J/; Xiii) = I' I(x)' g',ol/(x)' p(dx). \'
for all IE B( X) .

By LI/(l,x1o )=1 and the positivity of LI/(', Xiii) one obtains Lg"III/(x)'
Il(dx) = 1 and ~ \ I/(x) ~ 0 for all x E X. Thus

,-, 1(1'
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I: < IL,Jt: xl"l-f(xi,)1

=1 r (/(x)-f(\I")) , g"",,(x)'p(dx)
" ~r I \'11 I

for all n): no,

There cannot be constants () < X o < (j and XI'"'' X k with

and

k

Xo + I x,' (((x) - jJr,o))): 0,
, I

k

Xo + I 'X,'U:(x)-j:(x/ll))):I,
i"oc I

for all x EX.

for ali ), E X -- (x
/O

}'

since, otherwise, we would have

k

'X o ' K"I1",,(.r) + I Xi' U:(x) - t:(X/Il)) , g "Il""(X) ): K,"",,(X),
i "-" I

for all x E X - [XiII} and therefore

K'III'''(X) ' p(dx)
: _\j( ~ 'I

k •

+ I 'Xi·J. , .. (t;(x)-I(x/I))'K"",,,(x)'p(dx)
i I \, \/u'

g"",,,(X)' j.l(dx).
:\/11:

(Note that L,,(I, XfO) = Lj;(x)' g"",,,(X) ' p(dx), i= I, .. " k.) Consequently,
since L"(/,,X/II)--4j~(x/(I)' i= l, ... ,k, we would get
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and hence 0: 0 3 1, contradicting the above relations 0: 0 < <5 < 1. Therefore
there cannot be constants PI"'" Pk such that

and

k

L #;(.(,(x) - fJx io) ) 3 0
i= 1

k

L P,(f(X) -(;(.Xio )) > 0
i= I

for all x E X

forallxEX-{x j ,,}. I

Proof of Theorem 3. Note B(X) c Lf'(X, fl) for any p, 1:(: P< oc, and
any positive finite measure fl on X with each fl( {x j }) > O. By Lemma 4, the
pointwise convergence L,,(fi' x) -+ I(''I.), i = 1, ... , k, for all j, is equivalent
for such p and fl, to the convergence in the pth mean of L,,(n to f"
i = 1, ... , k. Furthermore, this measure fl can serve as a weight function on X.
Thus Proposition 5 implies our theorem. I

To display the power of conditions (3.2), we show that they are satisfied
by basic Chebyshev systems such as {I, x, x 2

} and {I, x, e'}.

EXAMPLES. Let X = {x 1, ... , Xi''''} be a real countable set with all X i :(: T.

(i) The set {I, x, x 2
} satisfies (3.2), namely: for arbitrary P3> 0 and

/~2 = -2 '/33' Xi we have

#2' (x - x,) + #3' (x2- x7) > 0

=0

for all x of x,

for x=x,.

(ii) Similarly, the (l,x,e'} fulfills (3.2): for arbitrary #3>0 and
P2 = -P3' eX' we have

#2' (x - x,) + #3' (e' - ee,) > 0

=0
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